
Vaccine: Obfuscating Access Pattern Against
File-Injection Attacks

Hao Liu† Boyang Wang† Nan Niu† Shomir Wilson‡ Xuetao Wei†
†University of Cincinnati ‡Pennsylvania State University

liu3ho@mail.uc.edu, {boyang.wang, nan.niu}@uc.edu, shomir@psu.edu, weix2@ucmail.uc.edu

Abstract—Searchable Encryption can search over encrypted
data without accessing data or queries in plaintext. It preserves
privacy while queries are performed over data on an untrusted
server. To ensure the efficiency of search, most Searchable
Encryption schemes reveal access patterns, i.e., a server learns
which encrypted files are retrieved for each query. Unfortunately,
by collecting access patterns, a file-injection attack can completely
compromise the query privacy offered by Searchable Encryption.

In this paper, we propose a novel pre-encryption obfuscation
mechanism, referred to as Vaccine, which can effectively protect
searchable encrypted data against a file-injection attack. Specifi-
cally, the main idea of Vaccine is to introduce a self file-injection
attack, which obfuscates access patterns obtained by an attacker
and prevents this attacker from inferring correct queries in
plaintext. In addition, by harnessing natural language processing
techniques, Vaccine can effectively remove self-injected files from
search results, and therefore introduce minimal tradeoffs. Our
experimental results on a real-world dataset show that Vaccine can
reduce an adversary’s guessing probability from 1 to 3.7× 10−3,
which significantly promotes privacy protection. Furthermore,
Vaccine introduces only 3.4% false negatives and no false positives
in search results.

I. INTRODUCTION

Searchable Encryption [1]–[5] can search over encrypted
data without accessing data or queries in plaintext. Specifically,
with Searchable Encryption, a data owner can outsource a set
of files to a server in ciphertext. In addition, this data owner
can submit a search token (a keyword query in ciphertext), and
the server can return encrypted files containing this keyword
without decrypting files or queries. Searchable Encryption can
preserve data privacy and query privacy against an untrusted
server [2]. Many applications, such as CryptoDB [6], Google’s
Big Query [7] and Microsoft Always Encrypted Database [8],
have implemented Searchable Encryption.

In order to ensure the efficiency of search over encrypted
data, most schemes need to reveal access patterns, i.e., a
server learns which encrypted files are retrieved for each query
[2]. Unfortunately, by collecting access pattern, a file-injection
attack [9] is able to completely compromise the query privacy
rendered by Searchable Encryption. Specifically, an attacker
in a file-injection attack injects a set of files (e.g., emails) to
a data owner, where each file contains keywords selected by
this attacker. If a data owner encrypts all those injected files
and stores those encrypted files on an untrusted server, then
any query in plaintext will map to a unique access pattern on
all those encrypted injected files. As a result, given a search
token and its corresponding access pattern on injected files, an

attacker can easily indicate which keyword query a data owner
is searching for. A file-injection attack is essentially a chosen-
document attack [10]. Details of this file-injection attack are
further presented in Sec. II.

In principle, leveraging Oblivious RAM [11] can hide access
patterns and preserve privacy against file-injection attacks [12].
However, recent research [13] has shown that implementing
Oblivious RAM in a Searchable Encryption scheme would in-
troduce an unbearable cost, where the communication overhead
of a query is even higher than directly retrieving an entire
dataset itself. Searchable Encryption schemes [14]–[19] sup-
porting forward security can mitigate leakage if a search token
is submitted before the completion of a file-injection attack, but
they still completely reveal query privacy for any search token
submitted after the attack. In light of the limitations of these
existing solutions, there is an emerging and imperative need
to develop efficient and effective countermeasures to minimize
privacy leakage under file-injection attacks.

In this paper, we propose a novel pre-encryption obfuscation
mechanism, referred to as Vaccine, to effectively minimize the
privacy leakage of Searchable Encryption under a file-injection
attack. Specifically, our main idea in Vaccine is to develop a
self file-injection attack, where self-injected files produced by
the data owner obfuscate the access pattern on files injected by
an attacker. Consequently, an attacker would fail to distinguish
unique access patterns, thereby failing to uncover queries in
plaintext using a file-injection attack. Our main contributions
are summarized below:

• Our proposed mechanism can effectively preserve access
patterns under a file-injection attack, and mitigate the
privacy leakage of Searchable Encryption. Moreover, Vac-
cine can be applied to any Searchable Encryption scheme
running keyword queries. As necessary tradeoffs, Vaccine
increases encryption time, search time and storage require-
ments 2X in the worst case. With additional methods in
practice, these tradeoffs can be optimized to 1.29X on a
real-world dataset.

• By harnessing natural language processing, Vaccine in-
troduces minimal impacts to the the correctness of search
results. Specifically, self-injected files, which alleviate
privacy leakage under a file-injection attack, have no
semantic value and can be excluded from the search
results for a keyword query. By building a semantic filter
based on n-grams [20] and cross entropy [21], Vaccine can

assist a data owner to automatically remove self-injected
files from search results.

• We leverage the number of indistinguishable bits in an
access pattern vector as the main privacy metric. Based on
this privacy metric, we formally define privacy in terms of
an attacker’s guessing probability, and rigorously analyze
the privacy of Vaccine.

• Our experimental results on the Enron email dataset [22]
show that an attacker, who was able to correctly infer a
query with a probability of 1 on a system not protected
by Vaccine, can infer a correct query with a probability of
only 3.7×10−3 on average under the protection offered by
Vaccine. A semantic filter in Vaccine is highly efficient. It
only takes 3 MBs storage overhead and 2.03 seconds to
build. Moreover, it only introduces 3.4% false negatives
and no false positives in search results.

• With the privacy mitigation, Vaccine forces an attacker
to change their attack strategy. For instance, an attacker
would have to keep resending duplicate or similar emails,
which diminishes the effectiveness of the attack. More
importantly, this misbehavior is abnormal compared to
legitimate emails and can be utilized as a critical feature
to detect file injection attacks.

There are two notable limitations to our contributions in
this paper. First, our scheme does not completely thwart file-
injection attacks but instead mitigates privacy leakage to an
attacker performing a file-injection attack. If an attacker could
inject an unlimited number of injected files, query privacy
would eventually be revealed since Searchable Encryption
needs to render correct search functions. Second, our proposed
scheme aims to obfuscate access patterns particularly against
file-injection attacks, where the assumptions of an attacker in
our system and threat model are the same as the assumptions
of file-injection attacks described in [9]. Our scheme does
not support privacy mitigation for other query types, such as
range queries, which are not involved in file-injection attacks.
Moreover, our approach is not a generic solution hiding access
pattern against other attacks, such as inference attacks [23],
[24] or query injection attacks [23], where the assumptions
and prior knowledge of the adversaries are different.

II. BACKGROUND

A. System Model

As shown in Fig. 1, the system model of a Searchable
Encryption (SE) scheme includes two parties, a data owner
and a server. The data owner outsources a set of files to the
server to reduce local storage costs. Each file that the data
owner uploads to the server contains several keywords. When
the data owner searches the files by submitting a keyword, the
server returns associated files that include this keyword.

Due to concerns about outside or inside attacks on the server,
the data owner does not fully trust the server with the privacy
of their files or queries. As a result, the data owner encrypts
their files with SE before uploading them to the server. For
each keyword query, the data owner generates a search token by

1. Encrypted Index & Data

Owner Server
2. Search Token

3. (Encrypted) Search Results

Fig. 1. The system model of a SE scheme.

leveraging SE. With a search token, the server is able to search
the encrypted files without obtaining these files or keyword
queries in plaintext.

B. Searchable Encryption

A SE scheme contains five algorithms, including GenKey,
Enc, GenToken, Query and Update,
• sk ← GenKey(1λ): is a probabilistic algorithm that is

run by the data owner. It takes a public security parameter
λ as input, and outputs a secret key sk.

• (Γ, c)← Enc(f , sk): is a probabilistic (or deterministic)
algorithm that is run by the data owner. It takes a set of
files f = {f1, ..., fn} and a secret key sk as input, and
outputs an encrypted index Γ and a set of encrypted files
c = {c1, ..., cn}.

• tkw ← GenToken(w, sk): is a probabilistic (or determin-
istic) algorithm that is run by the data owner. It takes a
keyword query w and a secret key sk as input, and outputs
a search token tkw.

• Iw ← Query(Γ, tkw): is a deterministic algorithm that
is run by a server. It takes an encrypted index Γ and
a search token tkw, and outputs a set of identifiers Iw,
where if w ∈ fi, then Ii ∈ Iw, for i ∈ [1, n].

• (Γ′, c) ← Update(Γ, f, sk): is a probabilistic (or deter-
ministic) algorithm that is run by the data owner. It takes
an encrypted index Γ, a file f and a secret key sk as input,
and outputs an encrypted index Γ′ and an encrypted file
c.

A SE scheme builds an encrypted index, which enables
keyword search over encrypted data through equality checking.
Each file itself is protected with AES-CBC-256. The objective
of algorithm Query is to find identifiers, i.e., pointers or mem-
ory addresses, of matched encrypted files for each keyword
query. Once obtaining those identifiers, a server can easily
return matched encrypted files. The correctness of a SE scheme
can be formally described as
• If w ∈ fi: Query(Γ, tkw) = Iw, where Ii ∈ Iw;
• If w /∈ fi: Pr[Query(Γ, tkw) = Iw, where Ii /∈ Iw] ≥

1− negl(λ)

where negl(λ) is a negligible function in λ.
Algorithm Update changes a current encrypted index Γ

based on a file f , and output an updated encrypted index Γ′.
Normally, this update operation covers adding a file, modifying
a file, or removing a file from an encrypted index.

C. File-Injection Attacks

Access Pattern. To maintain the efficiency of a search
function over encrypted data, a SE scheme reveals an access

k5 k6 k7 k8File f1

k3 k4 k7 k8

k2 k4 k6 k8

File f2

File f3

K = {k1, k2, k3, k4, k5, k6, k7, k8}

Fig. 2. A file-injection attack with 3 injected files, where f1 includes
{k5, k6, k7, k8}, f2 includes {k3, k4, k7, k8}, f3 includes {k2, k4, k6, k8}.
An access pattern vector (b1, b2, b3) = (0, 1, 1) implies keyword k4; an
access pattern vector (b1, b2, b3) = (1, 1, 1) indicates keyword k8.

pattern [2], [12], [25]. The access pattern leakage on a file can
be represented as a single bit with 1 indicating retrieval. An
access pattern of a search token on a number of β files can be
described as a binary vector ~b = (b1, ..., bβ). We refer to this
vector ~b as an access pattern vector.

With recent attacks [9], [10], [25]–[27], an attacker defeats
privacy through access pattern. For instance, by running a file-
injection attack [9], an attacker reveals query privacy, which
was meant to be protected by SE. Specifically, an attacker can
learn a query in plaintext through a unique access pattern on
a list of injected files.

Attack Assumptions. To perform a file-injection attack, a
few necessary assumptions are on the system model and an
attacker’s prior knowledge. First, an attacker assumes that a
data owner uses a SE scheme to protect private emails, where
the data owner will automatically encrypt an email whenever
it receives one and will immediately add the corresponding
encrypted email to the encrypted index generated by SE.
Besides observing access pattern on a server, an attacker is
assumed to know the keyword pool (or dictionary) K and the
number of keywords T of this pool in advance. Beyond these
prior knowledge, the attacker has no additional information.

Attack Details. With the above assumptions, an attacker
can initiate a (straightforward) file-injection attack as follows.
It sends an email to the data owner each day, where each
injected email contains a number of T/2 keywords. This
attacker can choose those T/2 keywords in each injected
email. After sending a number of dlog2 T e injected emails,
the attacker reveals the query of any search token, since any
search token maps to a unique access pattern vector on those
dlog2 T e injected files. An example of a straightforward file-
injection attack is illustrated in Fig. 2, where the keyword pool
K = {k1, k2, k3, k4, k5, k6, k7, k8} and T = 8.

Since there are thousands of keywords in a keyword pool in
general, it would be abnormal to have T/2 keywords in a single
email/file in practice. A more realistic file-injection attack will
set a threshold t as the maximum number of keywords in each
injected-file [9], where t < T/2. For example, T = 5, 000 and
t = 200. To reveal the query of any search token, the total
number of injected-files required is

β = dT/te+ dT/2te · dlog2(2t)e (1)

The basic idea of this attack considering this threshold t
is to first use dT/te files to divide the entire keyword pool
into dT/te subsets, where each subset has t keywords. Next,
each two adjacent subsets can be grouped together to perform
an instance of a straightforward file-injection attack, where the
total number of keywords in an instance is 2t and each injected-
file includes t keywords [9]. As a result, an access pattern
vector on all the β injected files is able to uniquely define a
keyword. Additional details can be found in [9].

D. Privacy Metric

In this paper, we propose to leverage a privacy parameter
θ, which is defined as the number of bits that are indistin-
guishable to a file-injection attacker in a β-bit access pattern
vector, as a privacy metric to validate the privacy of SE under a
file-injection attack. The claim that a bit b in an access pattern
vector is indistinguishable to an attacker means that

Pr[b = 0] =
1

2
, Pr[b = 1] =

1

2
.

Based on this privacy parameter θ, we can further present
privacy in terms of an attacker’s guessing probability.

Definition 1. Attacker’s Guessing Probability. Given a num-
ber of θ indistinguishable bits in an access pattern vector
~b = (b1, ..., bβ) obtained under a file-injection attack, the
probability that an attacker correctly guesses a query in
plaintext is P = 1/2θ.

III. N -GRAM AND CROSS ENTROPY

N -Gram. An n-gram language model is one of the most
common methods to predict the next word [20]. An n-gram
language model takes a corpus as training data and builds
a Markov model based on the probability distributions of
sequences of words. This is specifically done for the next word
in a sequence given the previous n− 1 words,

Pr(wi|wi−(n−1), ..., wi−1) =
c(wi−(n−1)...wi−1wi)

c(wi−(n−1)...wi−1∗)
where wi−(n−1), ..., wi−1 are the previous n−1 words preced-
ing the word wi, c(wi−(n−1)...wi−1wi) denotes the frequency
of sequence wi−(n−1), ..., wi−1, wi, and ∗ is a wildcard. Given
a sequence of n− 1 words, the sum of the probabilities of all
the possible next words is 1,

T∑
j=1

Pr(wi,j |wi−(n−1), ..., wi−1) = 1

where T is the total number of words.
An example of a 2-gram model (a bigram model) is pre-

sented in Fig. 3. Specifically, given a word “is”, there are two
possible next word, “a” and “not”, based on this corpus. The
probability of the next word is “a” is 2/3 and the probability
of the next word is “not” is 1/3. Once word sequence
probabilities are learned from a corpus, an n-gram model can
be used to predict the next word.

Cross Entropy. Based on this property, an n-gram can be
utilized as a semantic filter to decide whether a given text is

This is

a

not

cat

dog

1

2/3

1/3

1

1/3

2/3

.
1

1

2/3

'end'

1/3

Fig. 3. An example of the Markov model based on a bigram, where the
training corpus is {This is a dog. This is not a dog. This is a cat.}

Algorithm 1: SemFilter(f, h,MM,n)

Input: A text f , a threshold h, a Markov model MM , and
parameter n

Output: A bit b
1: (w1, w2, ..., wN)← Tokenize(f);
2: H = 0;
3: for k = n; k ≤ N ; k + + do
4: H = H + log2Pr(wk|wk−(n−1), ..., wk−1);
5: end for
6: H = −H/N
7: if H ≥ h then
8: return b = 0;
9: else

10: return b = 1;
11: end if

similar in semantics [20], [21]. Specifically, assume a Markov
model MM based on n-gram is trained by a set of semantic
texts. Given a text f , we can compute cross entropy [21]
between this text f and Markov model MM as,

H(MM, f) = − 1

N

N∑
i=1

log2 Pr(wi|wi−(n−1), ..., wi−1) (2)

where N is the number of words in this text. Note that the
above equation is an approximation of cross entropy, which
is based on the Shannon-McMillan-Breiman Theorem and is
often used in language modeling, since the true distribution of
a language is unknown [28].

A higher cross entropy indicates text f is more “surprising”
to the Markov model. It implies text f is not similar or relevant
to the training corpus, which further indicates text f is likely
not semantic. To avoid computing an undefined log2 0 in the
calculation of cross entropy, we use a smoothing method [28],
which redefines the probability of a next word as

Pr(wi|wi−(n−1), ..., wi−1) =
1 + c(wi−(n−1)...wi−1wi)

T + c(wi−(n−1)...wi−1∗)

where T is the total number of words in a corpus.
The pseudo code of calculating cross entropy for a given

text f is described in Algo. 1, where we use Tokenize(f) to
describe the process of segmenting a text f into a sequence of
words. If the output of Algo. 1 is 1, it indicates input text f is
similar to the training corpus and it is likely semantic.

IV. VACCINE: A PRE-ENCRYPTION OBFUSCATION

In this section, we present Vaccine, which preserves privacy
of a SE scheme against a file-injection attack.

Semantics of Received Emails. Since an attacker in a file-
injection attack does not write emails to a data owner for reg-
ular communication, but intentionally sends files with different
subsets of keywords on purpose to reveal query privacy, one
may think those injected files may not carry semantic texts, and
could be easily identified by investigating the semantics of each
received email. However, as pointed out in the original file-
injection attacks [9], an attacker could generate semantic texts
from a given subset of keywords using automate text generation
[29]. In other words, it is insufficient to prevent file-injection
attacks by directly examining the semantics of each received
email.

A. Vaccine: Self File-Injection

To protect SE and mitigate privacy leakage under a file-
injection attack, we propose a novel defense mechanism, re-
ferred to as Vaccine. The main idea of Vaccine is that, whenever
a data owner receives an email, either one sent by a legitimate
user or injected by an attacker, which the data owner could
not distinguish, the data owner injects a file generated by itself.
This self-injected file includes a set of random keywords that
does not have intersection with the set of keywords in the
received email. Both files will be encrypted by the data owner
with SE and added to the server at the same time. As a result,
this self file-injection will obfuscate access pattern on some of
the files maliciously injected by an attacker, which effectively
minimizes query privacy revealed to an attacker. Vaccine is a
pre-encryption obfuscation. It is compatible with any keyword
SE scheme.

Self file-injection can obfuscate access pattern, but will
introduce redundancy (self-injected files) and affect the cor-
rectness in search results returned by SE. We propose to
adopt a semantic filter at the data owner side to remove self-
injected files from search results after this data owner decrypts
the results locally. Self-injected files are designed with non-
semantic texts, which can be distinguished by leveraging a
semantic filter. Details of our scheme are further elaborated
below. For ease of presentation, a self-injected file in the
following indicates it is injected by a data owner, and an
injected file indicates it is maliciously injected by an attacker.

Details of Vaccine. Vaccine includes two algorithms, includ-
ing Inject and Remove. Inject introduces self-injected files for
privacy protection, and Remove helps to remove self-injected
files to ensure correct search results. The details of the two
algorithms are illustrated in Fig. 4 and Fig. 5.

In Inject, when the data owner receives an email f with a
number of t keywords, where this file is either sent by a legiti-
mate user or injected by an attacker, this data owner randomly
picks a number of t different keywords. Those t keywords are
selected from the keyword pool K but are not shown in the
received file f . By simply putting the t self-selected keywords
together, the data owner outputs a self-injected file without

{Γ′, c1, c2} ← Inject(f,K,Γ, sk): Given a received file f ,
a keyword pool K, an encrypted index Γ and a secret
key sk = {ska, sks}, where received file f includes t
keywords {k1, ..., kt}, the data owner

1) Selects t keywords {k′1, ..., k′t}, s.t.,

k′j
r← K′, K′ = K \ {k1, ..., kt}

where each k′j , for j ∈ [1, t], is uniformly chosen
from set K′;

2) Outputs a self-injected file f ′ s.t.,
k∗ /∈ f ′, ∀k∗ ∈ K∗, K∗ = K \ {k′1, ..., k′t}
AND k′j ∈ f ′, ∀j ∈ [1, t]
AND d|f ′|/256e = d|f |/256e

3) Flips a fair coin, if Heads, runs

(Γ∗, c1)← SE.Update(Γ, sks, f),
(Γ′, c2)← SE.Update(Γ∗, sks, f

′),

otherwise runs

(Γ∗, c1)← SE.Update(Γ, sks, f
′),

(Γ′, c2)← SE.Update(Γ∗, sks, f),

4) Outputs {Γ′, c1, c2}.

Fig. 4. Details of Inject in Vaccine.

putting any effort of making it semantically meaningful. In
addition, the data owner matches the size of this self-injected
file f ′ with the size of this received file f by repeating those
t self-selected keywords, such that the two files have a same
number of blocks after encrypting with AES-CBC-256, i.e.,
d|f ′|/256e = d|f |/256e. An example of a semantic email and
its corresponding self-injected email is described in Fig. 6.

Next, the data owner adds the self-injected file f ′ and the
received file f to the encrypted index on the server. One fair
coin is flipped to decide which file between f and f ′ will be
added first. The output of Inject includes an updated encrypted
index Γ′ and two encrypted files c1, c2. Since an attacker is
not able to distinguish which file is maliciously injected by
itself between the two files, it will fail to indicate correct
access pattern on the maliciously-injected file, if the access
pattern on the two encrypted files are different. As a result,
given a search token and corresponding access pattern, an
attacker’s probability of indicating a correct query in plaintext
will be significantly limited, which ultimately improves privacy
protection of a SE scheme under a file-injection attack.

When a data owner searches a keyword query w on its
encrypted index, the server returns a set of encrypted files.
After decrypting those files, the data owner can obtain files,
e.g., f ′w = {f ′w,1, ..., f ′w,m}, in plaintext. Some of those files
were previously injected by this data owner itself and do
not include semantic texts. The data owner can run Remove
algorithm to decide which ones are self-injected files and
remove them by using a semantic filter described in Sec. II.

fw ← Remove(f ′w, h,MM,n): Given a set of files f ′w =
(f ′w,1, ..., f

′
w,m), a threshold h, a Markov model MM ,

and a parameter n, the data owner
1) Sets fw = ∅
2) For each f ′w,i, for i ∈ [1,m], runs

b′i ← SemFilter(f ′w,i, h,MM,n)
if b′i == 1 fw ← fw ∪ f ′w,i

3) Outputs fw.

Fig. 5. Details of Remove in Vaccine.

I don't think I will be able to make our meeting tomorrow.
Can we pick it up again next week? Thanks.

larsen referenced beck busy pacific cora koch smoking lone
fiction Amelia money message frame davis pinnacle bottom
vol export Lynch

Fig. 6. An example of a legitimate email and its self-injected email.

B. Discussions

According to the design of Vaccine, if an attacker could
replay a same injected file multiple times, where a data owner
would self-inject multiple different files. The access pattern of
a search token on those same malicious injected files would be
always consistent, but its access pattern over those self-injected
files would be various. This may allow this attacker to bypass
the privacy protection provided by Vaccine. One such example
is illustrated in Fig. 7.

However, this potential threat can be easily suppressed by
ignoring any repeated email and only adding unique emails
to an encrypted index. More importantly, if an attacker keeps
sending same injected emails, which is extremely abnormal, the
data owner can easily detect a file-injection attack. In practice,
a Bloom filter [30] can be leveraged at the data owner side
to test whether a received email is a duplicate one, where a
Bloom filter only takes several kilobytes to maintain.

An attacker could also reply similar emails with a same set of
injected keywords in order to bypass the protection of Vaccine.
A data owner can eliminate these emails prior to encryption and
identifying this misbehavior by checking the set of keywords
using a Bloom filter. Although a data owner could receive some
similar emails with a set of keywords occasionally, keeping
receiving similar emails with a same set of keywords still
suggests misbehavior of an attacker.

For instance, among the 30, 109 emails in Enron dataset,
only 5% of the emails do not have a unique set of keywords.
In addition, since an attacker also needs to fix the number
of keywords in each injected file to make the attack efficient,
there are at most 0.6% emails do not have a unique set
of keywords given a fixed number of keywords. Obviously,
keeping injecting similar emails with a same set of keywords
would be suspicious in practice. Besides, replaying injected
emails would significantly reduce the attack effectiveness.

0 1

c1:[foot, soccer] c2:[day, note]

c3:[car, dollar]

0 1 0 0

c1:[foot, soccer] c2:[day, note] c4:[foot, soccer]

Fig. 7. If an attacker only injects a file f , Vaccine generates a self-injected
file f ′1 and outputs c1, c2. If access pattern on c1 and c2 are different, then
Vaccine preserves privacy. If this attacker injects file f again, Vaccine generates
a self-injected file f ′2 and outputs c3, c4. If access pattern on c3 and c4 are
the same, then Vaccine does not preserve privacy even though access pattern
on c1 and c2 are different.

One may also think simply including a special keyword in
each self-injected file as a unique indicator is sufficient to
identify self-injected files from a search result, and there is
no need to leverage a semantic filter to remove self-injected
files. Unfortunately, this naive approach would compromise the
privacy protection introduced by Vaccine. Specifically, if each
self-injected file includes a same keyword as a unique indicator,
then each self-injected file is indexed by the same keyword in
the encrypted index while maliciously-injected files are not. As
a result, an attacker could distinguish between a maliciously-
injected file and a self-injected file by observing the encrypted
index and access pattern on the server side.

V. PRIVACY AND TRADEOFF ANALYSIS

Privacy Analysis. Vaccine can obfuscate some of the bits in
an access pattern vector, which mitigates privacy leakage. We
validate the formal privacy of Vaccine by using the number of
distinguishable bits in an access pattern vector.

Theorem 1. With Vaccine, the number of bits in an access
pattern vector that are indistinguishable to an attacker is

θ = α+ (β − α) · t

T − t
(3)

where T is the total number of keywords, t is the number of
keywords in each injected file, β is the number of bits in each
access pattern vector, α is the number of 1s in an access pattern
vector over the files injected by an attacker.

Proof. For a file fi injected by an attacker, the data owner
generates a self-injected file f ′i using Vaccine. Since the
keywords selected in f ′i have no intersection with the keywords
in fi, if a token of a query keyword returns fi, then it will
certainly not return f ′i . For ease of analysis, we ignore the
negligible probability of returning f ′i in a SE scheme.

If a token outputs an access pattern 1 on fi, it will certainly
generate a different access pattern 0 on f ′i . Because fi and f ′i
are added to the encrypted index successively with a random
order in Vaccine, an attacker cannot distinguish the access
pattern on fi and f ′i , which means it will not be able to
distinguish bit bi in an access pattern vector ~b. Therefore, if
there are originally α 1s in an access pattern vector over all the
files injected by an attacker, those α bits are indistinguishable
to an attacker after applying Vaccine.

On the other hand, if access pattern on fi is 0 for a given
token, access pattern on f ′i could be 0 or 1. If it is still 0, it

does not offer additional privacy protection. However, if it is 1,
it mitigates privacy leakage. Assume each keyword k′j in f ′j is
selected uniformly from K′, where K′ = K\{k1, ..., kt}, for a
random search token, the probability that access pattern on f ′i
is 1 given access pattern on fi is 0 is t

T−t . Therefore, if there
are originally (β−α) 0s bits in an access pattern vector over all
the files injected by an attacker, then the average number of bits
among those (β − α) bits would be different after leveraging
Vaccine is (β − α) · t

T−t . Overall, the number of bits in an
access pattern vector that an attacker is not able to distinguish
after using Vaccine is θ = α+ (β − α) · t

T−t

Next, we further analyze E[θ], i.e., the expected number
of distinguishable bits in an access pattern vector. First, we
analyze the expected value of α.

Lemma 1. The expected number of 1s in an access pattern
vector ~b = (b1, ..., bβ) over files injected by an attacker is

E[α] = 1 +
1

2
· dlog2(2t)e (4)

where β = dT/te+ dT/2te · dlog2(2t)e, T is the total number
of keywords in keyword pool, and t is the number of keywords
in each injected file.

Proof. According to a file-injection attack, β = dT/te +
dT/2te ·dlog2(2t)e, where first dT/te bits decide which subset
a keyword belongs and the rest of dT/2te · dlog2(2t)e bits
determine which exact keyword it is. Therefore, there is one bit
among the first dT/te bits that is 1. The expected number of 1s
among the rest of dT/2te·dlog2(2t)e bits is 1

2 ·dlog2(2t)e.

Based on Theorem 1 and Lemma 1, we have

Lemma 2. With Vaccine, the expected number of indistin-
guishable bits in an access pattern vector ~b = (b1, ..., bβ) is

E[θ] = 1 +
t

T − t
· (dT/te − 1) + dlog2 2te (5)

where β = dT/te+ dT/2te · dlog2(2t)e, T is the total number
of keywords in keyword pool, and t is the number of keywords
in each injected file.

Proof. The correctness of this lemma can be proved below

E[θ] = E

[
α+ (β − α) · t

T − t

]
= E[α] + E

[
β · t

T − t

]
− E

[
α · t

T − t

]
= 1 +

1

2
dlog2(2t)e+ dT/2te · dlog2(2t)e · t

T − t

+dT/te · t

T − t
−
(

1 +
1

2
dlog2(2t)e

)
· t

T − t

= 1 +
t

T − t
· (dT/te − 1) + dlog2 2te

According to Def. 1, an adversary’s guessing probability is
1/2θ if access pattern is completely protected on a number

100 200 300 400 500

Threshold t

0

5

10

15

20
N

o
.

o
f

In
d

.
B

it
s

9.43

16

2

10.11

18

4

10.38

16

4

10.94

17

3

11.5

18

5

Mean

Fig. 8. The impact of threshold t on the number
of indistinguishable bits, where T = 5000.

100 200 300 400 500

Threshold t

0

5

10

15

N
o

.
o

f
In

d
.

B
it
s

Mean(Theory)

Mean(Experiment)

Fig. 9. The impact of threshold t on the number
of indistinguishable bits, where T = 5000.

100 200 300 400 500

Threshold t

0

2

4

6

8

G
u

e
s
s
in

g
 P

ro
b

a
b

ili
ty

10
-3

Mean

Fig. 10. The impact of threshold t on an adver-
sary’s guessing probability, where T = 5000.

of θ files. Assume the number of indistinguishable bits θ is a
random variable, where θ ∈ [0, β], and we use (θ0, θ1, ..., θβ) =
(0, 1, ..., β) to denote all the unique values of θ. We also use
φi to denote the frequency of the number of indistinguishable
bits is θi, where i ∈ [0, β], among N access pattern vectors
for N keywords. Then with Vaccine, the adversary’s expected
guessing probability of each keyword given those N access
pattern vectors under a file-injection attack can be computed
as

E[P] =

β∑
i=0

1

2θi
· φi
N

=
1

N

β∑
i=0

φi
2θi

(6)

Tradeoffs in Vaccine. In Vaccine, whenever a data owner
receives an email, it will output a self-injected email. The
storage spent on encrypted index and encrypted files will
increase by a factor of 2 in theory.

However, the above tradeoffs can be optimized using dif-
ferent methods. For example, emails from people in a white
list (e.g., friends and colleagues) are trustworthy and are less
likely to be injected emails. In addition, if there are subsequent
emails exchanged between a data owner and a sender, those
emails do not follow the algorithm of a file-injection attack,
and therefore are less likely to be injected emails. A data owner
can opt for not generating self-injected emails in those cases.
For instance, among the 30, 109 emails from Enron dataset,
71.5% of those emails are internal emails exchanged between
two enron.com addresses. If those emails are believed to be
trustworthy, then only 8, 580 self-injected emails are needed,
which only increases the storage by 1.29X.

VI. PERFORMANCE

Enron Dataset We test the performance of Vaccine on a
real-world dataset consisting of the Enron emails [22]. This
dataset includes emails from 150 employees of the Enron
Corporation, and it has been used in recent works [9], [10]
to study access pattern leakage. In our experiments, we pre-
process the emails from the Enron dataset using the Natural
Language Toolkit (NLTK) [31]. Following others’ efforts, we
collect emails from each user’s “ sent mail” folder. There are
30,109 emails from the “ sent mail” folders of all the users.

To obtain a keyword pool for the 30, 109 emails, we first
sanitize the email text by segmenting it into words and remov-
ing all numbers and special characters. Additionally, we tag

each word from those emails using Part-Of-Speech tagging and
lemmatize all words by using the WorldNet lemmatizer [20].
Then, we remove words, e.g., “and”, “an”, etc., that normally
would not be used as keywords.

As a result, we collect 89,788 unique words from the Enron
corpus. As previous works, we take the top 5,000 frequent
words as the keyword universe K, where keyword “enron” is
the most frequent keyword with a frequency of 144,316. Note
that the number of unique words (i.e., 89,788) we obtained
is not exactly the same as the one (i.e., 77,000) in previous
works [9], [10]. It is mainly because we implement the same
methodology but with different functions and libraries. For
instance, we leverage the WorldNet lemmatizer while the Porter
stemmer is utilized in [10].

Experiment Setting. We implement file-injection attacks
and Vaccine with around 2, 000 lines of code in Python 2.7,
and test our code on a MacBook Pro running High Sierra 10.13
with 2.5GHz Intel Core i5 and 12GB memory.

Privacy. We first test the number of indistinguishable bits
introduced by Vaccine. Specifically, given the total number of
keywords T = 5000 and a different value of t, we assume
that an attacker can generate β injected files for a file-injection
attack, where β is computed based on Eq. 1 and keywords in
each file are selected by following the attack algorithm. For
each injected file, Vaccine generates a self-injected file.

For each t, we randomly select N = 100 keywords from
the keyword pool, record its access pattern on the β injected
files and β self-injected files respectively, and calculate the
number of indistinguishable bits of each keyword, i.e., the
number of different bits between the one from injected files
and the one from self-injected files. The results are presented
in Fig. 8. When t = 200 and T = 5000, the average number
of indistinguishable bits is 10.11 in an access pattern vector,
where each access pattern vector has β = 142 bits. Fig. 8 also
implies the average number of indistinguishable bits slightly
increases with an increase on threshold t.

We also calculate the theoretical result of the number of
indistinguishable bits based on Lemma 2, and compare it with
our experimental results in Fig. 9. We can observe that the
experimental results of the number of indistinguishable bits
are consistent with our analysis in Lemma 2. Based on the
results from Fig. 8, we also calculate an adversary’s guessing
probability by using Eq. 6 and present it in Fig. 10. For

1 2 3 4 5 6 7 8 9 10 11 12 12.2877

Cross Entropy

0

0.2

0.4

0.6

0.8

1
C

D
F

0.02

Legitimate Files

Self-Injected Files

Fig. 11. The Cumulative Distribution Function
of the cross entropy over the training data.

0 100 200 300 400 500

File Length

0

2

4

6

8

10

12

C
ro

s
s
 E

n
tr

o
p

y

Legitimate Files
Self-Injected Files

Fig. 12. The distribution of the training data by
considering cross entropy and file length.

0 5 10 15 20 25 30

File Length

11

12

C
ro

s
s
 E

n
tr

o
p

y

Legitimate Files
Self-Injected Filesx=2

Fig. 13. The upper left corner of Fig. 12 (3-
gram with 10% Enron corpus.).

instance, given t = 200 and T = 5000, an adversary can
reveal a correct keyword with a probability of 3.7 × 10−3 on
average, which is significantly lower compared to a guessing
probability of 1 without exploiting Vaccine.

Tradeoffs. Self-injected files are helpful to mitigate privacy
leakage under a file-injection attack. On the other hand, they
need to be removed in search results. To build a semantic filter
to remove self-injected files, we assume the data owner already
has 10% of Enron corpus, and can train a Markov model with
this 10% of Enron corpus using n-gram, where n = 3 by
default. This Markov model only takes 3 MBs of local storage
and takes 2.03 seconds to train the model for the data owner.

Next, we randomly select 2,000 legitimate emails from the
Enron dataset and generate 2,000 corresponding self-injected
files for those legitimate emails. Those 2,000 selected legiti-
mate emails do not have overlaps with the 10% Enron corpus
that the data owner used for training the Markov model. Among
those 2,000 legitimate emails and 2,000 self-injected files, we
take 1,000 legitimate emails and their 1,000 self-injected files
as a training set, and leave the other 1,000 legitimate emails
and their self-injected files as a testing set.

For each file f in the training set, we run SemFilter with f
and the Markov model to obtain cross entropy H . The CDF of
this cross entropy over the training set is described in Fig. 11.
Almost all the self-injected files have the highest cross entropy,
which is H = − log2

1
T ≈ 12.2877 given T = 5000. On the

other hand, only 34 of legitimate emails in the training set has
a cross entropy of 12.2877. Therefore, if we simply leverage
the following threshold as a classifier

l̂ =

{
0, if H = − log2

1
T

1, if H < − log2
1
T

where l̂ = 1 indicates a semantic file, it introduces no false
positives and 3.4% false negatives. We also explore Naive
Bayes classifier with cross entropy, which introduces same false
positives and false negatives as shown in Table I.

Besides assessing cross entropy, if we also investigate the
length of each file in the training set (as shown in Fig. 12),
we observe that false negatives in the threshold classifier are
introduced when the length of an email is relatively small.
For a false negative, it indicates that a legitimate email is
semantically meaningful, but since its text is entirely irrelevant

TABLE I
FPS & FNS WITH 3-GRAM BASED ON 10% ENRON CORPUS.

Classifiers False Positives False Negatives
Threshold 0% 3.4%

Naive Bayes 0% 3.4%
k-Nearest Neighbor (k = 5) 1.8% 1.8%

TABLE II
FPS & FNS WITH 3-GRAM BASED ON 20% ENRON CORPUS.

Classifiers False Positives False Negatives
Threshold 0% 3%

Naive Bayes 0% 3.4%
k-Nearest Neighbor (k = 5) 1% 2.4%

TABLE III
FPS & FNS WITH 4-GRAM TRAINED BASED ON 10% ENRON CORPUS.

Classifiers False Positives False Negatives
Threshold 0% 5.9%

Naive Bayes 0% 5.9%
k-Nearest Neighbor (k = 5) 0.1% 6.2%

and surprising to the Markov model trained from the 10%
of Enron corpus, and a cross entropy of 12.2877 is reported.
Increasing the size of training corpus of the Markov model
can further reduce false negatives. For example, if the Markov
model is trained based on 20% of Enron corpus, then false
negatives can be reduced to 3%.

In Fig. 13, some false negatives occur as the file length is
smaller than 3. It is because when file length is smaller than
the value of n = 3 in n-gram a probability of the next word
is undefined. We assign the probability as 1

T using adding one
smoothing [21], which leads to a cross entropy of − log2

1
T .

In addition to threshold and Naive Bayes, we also apply
k-nearest neighbor classification by considering both cross
entropy and file length, and reach 1.8% false positives and
1.8% false negatives on the testing set, where k = 5 as
shown in Table I. In Table III, we also show that if we use
4-gram instead of 3-gram, then the false negatives increase.
The main reason is that more legitimate emails are irrelevant
and surprising to the Markov model trained by 4-gram.

VII. RELATED WORK

Attacks on SE. Besides file-injection attacks [9], query
recovery attacks proposed in [10], [25] are also able to recover

the keyword query of a search token. In the original query
recovery attack proposed by Islam et al. [25], an attacker is
assumed to have prior knowledge of keyword co-occurrence
matrix M , where mi,j in this matrix represents the prob-
ability that keyword wi and keyword wj appear in a file
f . By additionally observing access pattern and collecting a
corresponding keyword co-occurrence matrix M ′, an adversary
maps keywords with search tokens using an optimization
algorithm. Cash et al. [10] improved this attack by assuming
the number of files associated with each keyword is also known
by the adversary. Compared to a query recovery attack, which
is a passive attack, a file-injection attack is an active attack and
does not require prior knowledge of the keyword co-occurrence
matrix. Another passive attack, named reconstruction attack
[26], [27], particularly targets SE schemes running range
queries and reveals query privacy through access pattern, if
range queries are uniformly distributed.

Countermeasures. Exploiting Oblivious RAM can hide
access pattern. However, efficiently implementing Oblivious
RAM in SE is challenging [12], [13]. SE schemes [14]–[19]
supporting forward security, can mitigate leakage if a search
token is submitted before the completion of a file injection
attack, but still completely reveal query privacy for any search
token submitted after the attack.

Chen et al. [32] proposed a framework to specifically ob-
fuscate access pattern under query recovery attacks by using
d-privacy. Each file is divided into m shares (or called shards)
using (k,m)-erasure coding, and both false negatives and
false positives are introduced on each of the m shares before
encrypting with SE. However, this framework [32] does not
address privacy leakage against a file-injection attack. Since
each malicious file is injected separately, an attacker can distin-
guish access pattern on each injected file even this framework
is applied, and still reveal query privacy.

Quan et al. [33] designed a pre-encryption obfuscation
method to mitigate privacy leakage against range injection
attacks by leveraging randomized response. Unfortunately, this
method does not render privacy enhancement against file-
injection attacks.

VIII. CONCLUSION

We design a novel pre-encryption obfuscation mechanism to
obfuscate access pattern on searchable encrypted data against
file-injection attacks. By evaluating the similarity of texts
in emails, our mechanism introduces no false positives and
minimal false negatives to search results.

REFERENCES

[1] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for Searches
on Encrypted Data,” in Proc. of IEEE S&P’00, 2000.

[2] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient Construc-
tions,” in Proc. of ACM CCS’06, 2006.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic Searchable
Symmetric Encryption,” in Proc. of ACM CCS’12, 2012, pp. 965–976.

[4] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,
“Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries ,” in Proc. of CRYPTO’13, 2013.

[5] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. Keromytis, and S. Bellovin, “Blind Seer: A Searchable
Private DBMS,” in Proc. of IEEE S&P’14, 2014.

[6] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query Processing,”
in Proc. of ACM SOSP’11, 2011.

[7] “Google encrypted bigquery client.” [Online]. Available: https://github.
com/google/encrypted-bigquery-client

[8] “Microsoft always encrypted (database engine).” [Online]. Avail-
able: https://docs.microsoft.com/en-us/sql/relational-databases/security/
encryption/always-encrypted-database-engine?view=sql-server-2017

[9] Y. Zhang, J. Katz, and C. Papamanthou, “All Your Queries Are Belong
to Us: The Power of File-Injection Attacks on Searchable Encryption,”
in USENIX Security, 2016, pp. 707–720.

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-Abuse Attacks
Against Searchable Encryption,” in Proc. of CCS’15, 2015.

[11] O. Goldreich, “Towards a Theory of Software Protection and Simulation
by Oblivious RAMs,” in Proc. of ACM STOC’87, 1987.

[12] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally,
R. Shay, J. D. Mitchell, and R. K. Cunningham, “SoK: Cryptographically
Protected Database Search,” in Proc. of IEEE S&P’17, 2017.

[13] M. Naveed, “The Fallacy of Composition of Oblivious RAM and
Searchable Encryption,” https://eprint.iacr.org/2015/668.pdf.

[14] E. Stefanov, C. Papamanthou, and E. Shi, “Practical Dynamic Searchable
Encryption with Small Leakage,” in Proc. of NDSS’14, 2014.

[15] R. Bost, “Sophos: Forward Secure Searchable Encryption,” in Proc. of
ACM CCS’16, 2016.

[16] A. A. Yavuz and J. Guajardo, “Dynamic Searchable Symmetric En-
cryption with Minimal Leakage and Efficient Updates on Commodity
Hardware,” in Proc. of SAC’15, 2015.

[17] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward Secure
Dynamic Searchable Symmetric Encryption with Efficient Updates,” in
Proc. of ACM CCS’17, 2017.

[18] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives,” in
Proc. of ACM CCS’17, 2017.

[19] M. O. Ozmen, T. Hoang, and A. A. Yavuz, “Forward-Private Dynamic
Searchable Symmetric Encryption with Efficient Search,” in Proc. of
IEEE ICC’18, 2018.

[20] S. Bird, E. Klein, and E. Loper, Natual Language Processing with Python.
O’REILLY, 2009.

[21] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
Naturelness of Software,” in Proc. of IEEE Internatinoal Conference on
Software Engineering (ICSE), 2012.

[22] “Enron dataset.” [Online]. Available: https://www.cs.cmu.edu/∼enron/
[23] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on Property-

Preserving Encrypted Databases,” in Proc. of ACM CCS’15, 2015.
[24] P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why Your Encrypted

Database is Not Secure,” in Proc. of HotOS’17, 2017.
[25] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern Disclosure

on Searchable Encryption: Ramification, Attack and Mitigation,” in Proc.
of NDSS’12, 2012.

[26] Georgios Kellaris and George Kollios and Kobbi Nissim and Adam
O’Neil, “Generic Attacks on Secure Outsourced Databases,” in Proc.
of ACM CCS’16, 2016.

[27] M.-S. Lacharite, B. Minaud, and K. G. Paterson, “Improved Reconstruc-
tion Attacks on Encrypted Data Using Range Query Leakage,” in Proc.
of IEEE S&P’18, 2018.

[28] C. D. Manning and H. Schutze, Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[29] Y. Yao, B. Viswanath, J. Cryan, H. Zheng, and B. Y. Zhao, “Automated
Crowdturfing Attacks and Defenses in Online Review Systems,” in Proc.
of ACM CCS’17, 2017.

[30] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[31] “Natural language toolkit.” [Online]. Available: https://www.nltk.org/
[32] G. Chen, T.-H. Lai, M. K. Reiter, and Y. Zhang, “Differentially Private

Access Patterns for Searchable Symmetric Encryption,” in Proc. of IEEE
INFOCOM’18, 2018.

[33] H. Quan, H. Liu, B. Wang, M. Li, and Y. Zhang, “Randex: Mitigaing
Range Injection Attacks on Searchable Encryption,” in Proc. of IEEE
CNS’19, 2019.

