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Abstract
One approach to understanding the vastness and complexity of
the web is to categorize websites into sectors that re�ect the spe-
ci�c industries or domains in which they operate. However, ex-
isting website classi�cation approaches often struggle to handle
the noisy, unstructured, and lengthy nature of web content, and
current datasets lack a universal sector classi�cation labeling sys-
tem speci�cally designed for the web. To address these issues, we
introduce SoAC (Sector of Activity Corpus), a large-scale corpus
comprising 195,495 websites categorized into 10 broad sectors tai-
lored for web content, which serves as the benchmark for evaluating
our proposed classi�cation framework, SoACer (Sector of Activity
Classi�er). Building on this resource, SoACer is a novel end-to-
end classi�cation framework that �rst fetches website information,
then incorporates extractive summarization to condense noisy and
lengthy content into a concise representation, and �nally employs
large language model (LLM) embeddings (Llama3-8B) combined
with a classi�cation head to achieve accurate sectoral prediction.
Through extensive experiments, including ablation studies and
detailed error analysis, we demonstrate that SoACer achieves an
overall accuracy of 72.6% on our proposed SoAC dataset. Our abla-
tion study con�rms that extractive summarization not only reduces
computational overhead but also enhances classi�cation perfor-
mance, while our error analysis reveals meaningful sector overlaps
that underscore the need for multi-label and hierarchical classi�ca-
tion frameworks. These �ndings provide a robust foundation for
future exploration of advanced classi�cation techniques that better
capture the complex nature of modern website content. 1
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1 Introduction
Automatically classifying website content by sector of activity of-
fers a practical way to organize and interpret the web’s information
landscape and is bene�cial for a range of applications, including
cybersecurity, where it enables the identi�cation of vulnerabilities
speci�c to particular industries, and targeted advertising, where
aligning ad content with a site’s sector enhances user engagement
and click-through rates [12, 21, 33]. Additionally, sector classi�ca-
tion is pivotal for enforcing sector-speci�c privacy regulations in
the U.S., which adopts a sectoral approach to data privacy legislation.
For example, the Health Insurance Portability and Accountability
Act (HIPAA) mandates rigorous standards for healthcare websites
handling protected health information. Thus, accurately assign-
ing websites to sectors such as �nance, healthcare, or education is
essential for e�ective regulatory compliance.

However, the inherent complexity and lack of central governance
on the Web present signi�cant challenges in developing a universal
sector-based classi�cation labeling system tailored speci�cally for
web content. Existing classi�cation labeling systems, such as the
North American Industry Classi�cation System (NAICS) and the
Statistical Classi�cation of Economic Activities in the European
Community (NACE), were initially designed for broader economic
reporting [27] and often fail to capture the dynamic, and multifac-
eted nature of contemporary website content [15].

To address these limitations, we introduce the SoAC, a novel
dataset speci�cally designed for sector-based website classi�cation.
Our dataset employs a simpli�ed coarse-grained labeling system of
10 sectors, derived from the PrivaSeer framework [31]. This system
consolidates 148 detailed industry categories from the �ne-grained
labeling system originally developed by People Data Labs (PDL),2
resulting in broader sector categories that are better suited for web-
based classi�cation tasks. Throughout this paper, we refer to the 10-
sector classi�cation developed by PrivaSeer as the coarse-grained
labeling system, and to the original 148-category classi�cation from
PDL as the �ne-grained labeling system. The mapping between
these two labeling systems is provided in Table D.

To operationalize this dataset, we also introduce SoACer, a novel
framework for automated multi-class website classi�cation that
leverages large language models (LLMs) to address the challenges
of noisy, unstructured web content. SoACer is built on the SoAC
and designed to push beyond the limitations of existing website

2People Data Labs (PDL) provides comprehensive data on companies and industries;
see https://docs.peopledatalabs.com/docs/industries for details.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704268.3742691&domain=pdf&date_stamp=2025-08-27
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classi�cation methods through a three-stage pipeline. The frame-
work begins by applying extractive summarization with LexRank
to condense lengthy and often inconsistent website content3 into
concise representations. This approach assumes that the most fre-
quently discussed content in a document re�ects the website’s core
activity. Since longer texts demand higher memory and compu-
tation, we systematically evaluate multiple summary lengths and
select the optimal con�guration based on validation performance.
These optimized summaries are then transformed into embeddings
using a frozen Llama3-8B model, and passed through a �ne-tuned
classi�cation head to predict website sectors.

Our thorough analysis shows that the e�ectiveness of SoACer
in leveraging lightweight LLMs (Llama3-8B) for accurate sectoral
classi�cation. Furthermore, the ablation study shows concise sum-
maries not only reduce computational overhead but also yield supe-
rior classi�cation performance compared to using the full text. Al-
though state-of-the-art LLMs are capable of handling long contexts,
we �nd that summary-based inputs o�er a more e�cient alternative
without sacri�cing accuracy for this task. Furthermore, we demon-
strate that adopting the coarse-grained labeling system for the
classi�cation task, rather than the initial 148-category �ne-grained
labeling system, improves the classi�cation performance of SoACer.
An error analysis reveals semantic overlaps resulting from shared
vocabulary among sectors with similar activities. Through sector-
based evaluation, we �nd that sectors characterized by blurred
thematic boundaries or broad content scopes experience lower
classi�cation accuracy, motivating the need for multi-label or hier-
archical classi�cation in future work.

The main contributions of this work are as follows:
• SoAC Corpus: A dataset of 195,495 websites categorized
into 10 universal website sectors.

• LLM-based Website Classi�cation Framework: SoACer,
a novel pipeline introducing multi-class website classi�ca-
tion using LLMs for the �rst time in website classi�cation.

The following sections review related work, describe the SoAC
Corpus and SoACer framework in detail, present comprehensive
experimental results highlighting our framework’s performance
improvements and practical bene�ts, and �nally discuss the broader
implications, limitations, and future directions for sector-based
website classi�cation research.

2 Related Works
Web content classi�cation, encompassing both page and website
categorization, is crucial for online information retrieval and man-
agement [22, 29]. Web page classi�cation focuses on individual
pages, whereas website classi�cation addresses entire sites holisti-
cally.

2.1 Classi�cation of Web Content
Traditional web page classi�cation has utilized methods like Naive
Bayes, KNN [5, 20], and SVMs [28, 29]. Deep learning approaches
(CNNs [1], LSTMs [22]) improved performance but still lag behind
transformer-based models (e.g., Llama, BERT, RoBERTa) in cap-
turing complex semantics and richer contexts [34]. Nevertheless,
3Noisy website content refers to the inconsistency and lack of coherence often found
across di�erent pages of a website.

model performance heavily relies on dataset quality. Prior research
typically employed public directories like Yahoo! and dmoz ODP,
as well as datasets such as WebKB [11] and 20 Newsgroups [29],
which have become outdated and lack sector-speci�c categories.
Domain-speci�c sectoral classi�cation (e.g., IndustrySector [4]) ex-
ists, but typically focuses on structured data and targeted domains.
Unlike these approaches, SoAC addresses broader sector-based clas-
si�cation by directly modeling noisy and unstructured website
content.

2.2 Website Classi�cation
Website classi�cation requires holistic analysis of entire sites and
has received comparatively less attention [10]. Earlier studies pri-
marily focused on topic-based categorization usingmanual or single-
label approaches [25, 30]. Automated sector-based methods often
utilized industry classi�cation systems such as NAICS, originally
not designed for web categorization [12, 21, 33]. Addressing this,
the PrivaSeer labeling system consolidates 148 industries into 10
web-speci�c sectors (Table 1), enabling practical and regulatory
applicability. For example, medical sites must adhere to HIPAA reg-
ulations, while �nance or education sectors follow di�erent privacy
standards tailored to their speci�c data.

2.2.1 Challenges in Website Classification. Lengthy and noisy con-
tent signi�cantly challenges website classi�cation. Traditional mod-
els struggle with the extensive, multi-page, and structurally diverse
nature of websites [7, 16]. Commercial sites often include non-
informative elements such as advertisements and navigation panels,
which must be e�ectively removed to avoid distorting thematic
signals critical for accurate categorization [2, 36].

2.3 Text Classi�cation with LLMs
Text classi�cation has been signi�cantly advanced by Large Lan-
guage Models (LLMs), starting with transformer-based models such
as BERT [8] and RoBERTa [24]. Although these models demon-
strated strong performance, their limited context length (512 to-
kens) restricted e�ectiveness on longer documents. Recent research
transitioned toward embedding-based methods using decoder-only
LLMs like GPT to better capture semantic relationships [32]. Inno-
vations like lightweight LLMEmbed [23] optimize computational
e�ciency by combining embeddings frommultiple layers, achieving
performance comparable to larger models with reduced overhead.

Prompt-based classi�cation leverages pre-trained LLMs by fram-
ing tasks as natural language prompts, enabling zero-shot classi�-
cation without extensive labeled data [26]. However, these methods
face sensitivity to prompt wording, inconsistent outputs, and biases,
limiting reliability for large-scale tasks [6, 18]. Hybrid approaches,
such as PTEC [4], address these issues by integrating prompt tun-
ing with embedding-based classi�cation, enhancing scalability and
accuracy. Selecting an appropriate approach depends on speci�c
application requirements, balancing accuracy, computational con-
straints, and task nature.

In summary, previous web classi�cation research using tradi-
tional and topic-based methods struggled with the complexities
and sectoral nature of modern web content. To overcome these,
we introduce the SoAC corpus, an up-to-date, large-scale dataset
structured around the web-speci�c PrivaSeer sector classi�cation
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Figure 1: Data collection and processing pipeline for the SoAC Corpus.

system, o�ering enhanced utility for this task compared to the more
granular 148-category PDL labeling system. Complementing this,
our novel SoACer framework leverages extractive summarization
combined with lightweight LLM embeddings, e�ectively addressing
computational overhead, document length, and content noise. This
integration demonstrates signi�cant improvements in sector-based
website classi�cation performance.

3 SoAC Corpus: Collection and Processing
The SoAC Corpus comprises 195,495 websites categorized by their
primary sector of activity, collected in 2024. This comprehensive
dataset was developed through a systematic process designed to
accurately represent the current web ecosystem.

3.1 Document Collection
The data collection process, as depicted in Figure 1, involved multi-
ple systematic steps designed to ensure dataset comprehensiveness
and quality:

(1) Initial URLs. The corpus foundation was established using
the People Data Labs platform4, which provided 546,321 company
pro�les collected in 2018. Each pro�le included a URL linking to
the company’s landing webpage and industry labels based on 148
�ne-grain PDL’s 5 classi�cation labeling system.

(2) FocusedWeb Crawling. A custom web crawling framework
was developed to initiate data collection from each company’s
landing page. Using a breadth-�rst search with a depth limit of
one, the crawler parsed not only the landing page but also all
internal hyperlinks on the same domain (i.e., links pointing to
other webpages within the same website). During this process, it
systematically excluded universal legal documents, such as Terms
and Conditions or Privacy Policies, that typically contain limited
sector-speci�c information.

(3) Content Extraction and Storage. Initially, the dataset in-
cluded raw HTML content from 254,702 websites. To enhance us-
ability, boilerplate content (universal, non-informative sections)
was subsequently removed to extract the textual content of each
website. This re�nement resulted in the exclusion of 509 instances
where raw HTML content could not be parsed by the Boilerpipe
framework.

4https://docs.peopledatalabs.com/docs/free-company-dataset
5https://docs.peopledatalabs.com/docs/industries

(4) Labeling Methodology. The initial company data were anno-
tated with 148 self-declared industry categories from People Data
Labs (PDL). To construct the SoAC, we systematically mapped these
�ne-grained labels into 10 broader, coarse-grained sectors de�ned
by the PrivaSeer classi�cation labeling system (see Table 6). This
transformation reduces data sparsity and semantic overlap, enhanc-
ing interpretability. We empirically validate the superiority of this
coarse-grained framework over the original 148 �ne-grain labels in
Section 5.5.

(5) Content Summarization and Post-processing. To opti-
mize the corpus for classi�cation tasks, we applied content-length
�ltering to exclude documents exceeding 100,000 words, thereby
preventing length-induced bias in the training data [19]. We also
�ltered out overly short documents, which often consisted of noisy
or non-informative content. In particular, we excluded website
content with fewer than 70, a threshold derived from empirical
observation. We found that such short entries frequently lacked
meaningful semantic structure and made the LexRank algorithm
ine�ective in producing coherent summaries. While the 70-word
cuto� was determined heuristically, it was informed by manual
inspection and practical performance considerations during the
preprocessing stage.

3.2 Dataset Statistics
The SoAC Corpus, available in the HuggingFace (HF) dataset repos-
itory 6, comprises 195,495 unique websites collected as of 2024,
serving as a robust resource for website content classi�cation re-
search. The dataset is systematically divided into training (56%),
validation (14%), and test (30%) sets (see Table 5). On average, each
website contains 6,544 words, with a median length of 3,212 words.
Table 1 summarizes the distribution of websites across the 10 de-
�ned sectors.

Notably, the dataset exhibits inherent class imbalance, mirroring
real-world sector distribution patterns where certain sectors domi-
nate the digital landscape. Recognizing and possibly addressing this
imbalance is crucial for accurate model evaluation and real-world
applicability.
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Table 1: Distribution of Websites Across Sectors of Activity in SoAC
Corpus.

Category (Acronym) Count %
Finance, Marketing & Human Resources (FMHR) 38,331 19.6%
Information Technology & Electronics (ITE) 29,588 15.1%
Consumer & Supply Chain (CSC) 27,030 13.8%
Civil, Mechanical & Electrical (CME) 25,460 13.0%
Medical (MED) 17,393 8.9%
Sports, Media & Entertainment (SME) 15,808 8.1%
Education (EDU) 13,247 6.8%
Government, Defense & Legal (GDL) 11,124 5.7%
Travel, Food & Hospitality (TFH) 10,281 5.3%
Non-Pro�t (NP) 7,233 3.7%

Table 2: Partition of the SoAC Corpus into training, validation, and
test sets for supervised classi�cation.

Set Count Percentage
Training 109,476 56%
Validation 27,370 14%
Test 58,649 30%

4 SoACer: Website Classi�cation Framework
The SoACer framework, illustrated in Figure 2, enables high-level
sectoral classi�cation by integrating content summarization, transformer-
based embeddings, and a multi-class linear classi�cation head. This
section details the training and inference procedures of the frame-
work.

4.1 Training Architecture Overview
The training procedure consists of three main components: content
summarization, model architecture, and training strategy for multi-
class classi�cation.

4.1.1 Content Summarization. To handle lengthy web content, we
employ LexRank [9], an extractive summarization technique, to
generate concise summaries for each website. Summarization im-
proves the e�ciency of processing lengthy website content with
transformer models like Meta-Llama-3-8B by reducing input length
while aiming to retain key information about the service that a

6https://huggingface.co/datasets/Shahriar/SoAC_Corpus

website o�ers. The summary for each website content F8 where
8 2 [1, 2, ...,=] is computed as:

B8 = LexRank(F8 , sentences_count) (1)

where sentences_count speci�es the target number of sentences
in the summary. LexRank uses a graph-based approach with a
PageRank-derived algorithm to ensure that the most pertinent in-
formation is retained for classi�cation purposes. Further technical
details on LexRank are provided in Appendix A.

4.1.2 Multi-class Classification. We frame sector prediction as a
multi-class classi�cation problem. For each website summary B8 , we
�rst obtain contextualized token embeddings using Meta-LLaMA-
3-8B:

H(!) = LlamaEmbed(B8 ) =
h
h(!)1 , h(!)2 , . . . , h(!))

i
, (2)

where h(!)C 2 R3 is the embedding of token C from the last
hidden layer !, and) is the total number of tokens in the summary.

The embedding vector x is then computed by applying mean
pooling over the transformer outputs:

x =
1
)

)’
C=1

h(!)C . (3)

The embedding G is then processed through a multi-layer per-
ceptron (MLP) to produce logits, de�ned as:

h(; ) = Drop
⇣
LReLU

⇣
BN

⇣
W;x(;�1) + b;

⌘⌘⌘
, ; = 1, 2 (4)

z = W3h(2) + b3 (5)

whereDrop(·), LReLU(·), andBN(·) denote Dropout, LeakyReLU,
and Batch Normalization, respectively.

The model predicts a sector class ~ 2 {1, ...,⇠}, where ⇠ is the
number of sectors. We use the Cross-Entropy Loss function de�ned
as:

L(x,~) = �
⇠’
2=1

~2 log

 
4I2Õ⇠
9=1 4

I 9

!
(6)

where I represents the logits produced by the model’s �nal linear
layer, and ~ denotes the ground truth label represented as a one-hot
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encoded vector. During training, this loss is minimized to optimize
the model parameters.

4.1.3 Training Procedure. We divide the SoAC Corpus into train-
ing, validation, and test splits (Table 5). Model training is conducted
in epochs, optimizing model parameters via Adam optimizer with a
learning rate of 2e-4. After each epoch, the model’s performance is
evaluated on the validation loss. The best-performing model, based
on the lowest validation loss, is selected for testing. This approach
balances over�tting prevention and computational e�ciency, en-
suring robust model performance.

4.2 Inference
The inference process in the SoACer Framework is designed to
categorize new, unseen web content into the most relevant sector
designed similarly to Hugging Face pipelines and consists of three
main components: Pre-processing, Forward (Inference), and Post-
Processing.

Pre-processing Stage. This stage handles two types of input: raw
text and website URLs. The process varies based on the input type:

• Raw Text (1): Directly forwarded to text summarization,
assuming it represents the website content.

• Website URL (2.1 and 2.2): If the input is a URL, the frame-
work initiates a recursive crawling process by parsing the
main webpage of the given website URL, followed by depth-
limited crawling to e�ciently gather relevant content while
adhering to robots.txt rules. The extracted content is then
processed using Boilerpipe to retrieve the main textual con-
tent.

• Text Summarization (3): Both crawled and directly submit-
ted texts undergo summarization using LexRank to produce
concise summaries.

Forward (Inference) Stage (4). The summarized content is then
passed through the �ne-tuned classi�er to generate the �nal sector
prediction.

Postprocessing Stage (5). The �nal prediction, along with all sectors
with their con�dence score, website-generated summary, and origi-
nal scraped input text from the website, are the output of SoACer
framework in the inference time.

5 Experiments
This section outlines the experiments conducted to evaluate the
SoAC and SoACer framework. We assess our website class�ers
performance through a series of evaluations, focusing on four key
aspects: (1) the impact of LexRank summary length on both classi-
�cation accuracy and computational e�ciency, (2) an analysis of
classi�ers’ performance on the website classi�cation task on the
optimal summary length selected in step 1 (3) a comparative analy-
sis of full-text versus summary- based classi�cation as an ablation
study, and (4) an evaluation of PrivaSeer labeling system applied to
the SoAC dataset, highlighting its strengths and limitations.

In this section, we summarize the experimental evaluations con-
ducted to assess the SoACer framework. A detailed description of

the baseline model architectures, as well as SoACer hyperparame-
ters, training setup, and classi�cation head design, can be found in
Appendix B.

5.1 Evaluation Metrics
We evaluate classi�cation performance using �ve standard metrics:
Accuracy,Weighted Accuracy,Weighted Precision,Weighted Recall,
and Weighted F1-score. These weighted metrics re�ect the relative
frequency of each class by assigning a higher weight to classes with
more true instances. This provides an overall performance estimate
that aligns with the data distribution, ensuring that the majority
classes are proportionally represented in the evaluation. Formal
de�nitions are provided in Appendix C.

5.2 Impact of Summary Length on
Classi�cation Performance

In this subsection, we systematically evaluated the impact of vary-
ing the number of sentences extracted by LexRank summarization
on the classi�cation performance (using Meta-Llama-3-8B embed-
dings) of the SoACer framework. Table 3 summarizes the results
obtained from di�erent summary lengths, quanti�ed by the number
of extracted sentences and their corresponding token counts7. Our
�ndings indicate a clear trend in model performance relative to
summary length.

Increasing the summary length consistently enhances classi�-
cation accuracy, balanced accuracy, precision, recall, and F1-score,
with substantial improvements observed between 2-sentence sum-
maries (sc2) with an average of 107 tokens and 20-sentence sum-
maries (sc20) with an average of 765 tokens. Speci�cally, the accu-
racy increased from 66.3% to 72.3%, balanced accuracy from 64.0%
to 70.1%, and weighted precision, recall, and F1-score similarly
improved.

The peak performance is achieved at 20-sentence summaries
(average 765 tokens), achieving the highest accuracy of 72.3%. Be-
yond 20 sentences, we observed small �uctuations with a slight
performance drop. For instance, summaries consisting of 25 and 30
sentences showed marginal variations in performance (accuracy at
72.0% and 72.1%, respectively).

From a computational e�ciency perspective, shorter summaries
signi�cantly reduce memory and processing power requirements,
enabling faster inference times and lower resource usage. Therefore,
selecting a summary length of around 20 sentences (765 tokens)
provides the optimal balance between high classi�cation perfor-
mance and computational e�ciency. This experiment serves as a
preliminary step in determining the optimal con�guration for the
SoACer framework.

5.3 Classi�ers’ Performance on the SoAC
In this subsection, we present a comprehensive comparative anal-
ysis of di�erent classi�ers’ performance using various Large Lan-
guage Model (LLMs) embeddings in the proposed SoACer frame-
work. Table 4 details the performance metrics for di�erent models
evaluated on the website classi�cation task.

7The number of token counts is computed using a rule of thumb, approximated as the
number of words multiplied by 1.5.
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Table 3: Performance comparison across di�erent summary lengths
on the validation set. Sent. Count (Tok.) represents the number of
top n extracted sentences for extractive summarization and the cor-
responding average token count. Acc. = Accuracy, WAcc. =Weighted
Accuracy, W Prec. = Weighted Precision, W Rec. = Weighted Recall,
and W F1 = Weighted F1-score.

Sent. Count (Tok.) Acc. B Acc. W Prec. W Rec. W F1

sc2 (107 tok.) 66.3% 64.0% 66.1% 66.3% 66.0%
sc4 (195 tok.) 69.3% 68.2% 69.4% 69.3% 69.3%
sc10 (427 tok.) 71.1% 69.6% 71.1% 71.1% 71.0%
sc15 (601 tok.) 71.7% 69.9% 71.6% 71.7% 71.5%
sc20 (765 tok.) 72.3% 70.1% 72.2% 72.3% 72.1%
sc25 (920 tok.) 72.0% 69.7% 72.1% 72.0% 71.9%
sc30 (1067 tok.) 72.1% 70.2% 72.1% 72.1% 71.9%

Optimal Model Selection for SoACer. Among all models evaluated,
LLaMA3-8B demonstrated the best performance, achieving an
overall accuracy of 72.6%, balanced accuracy of 70.6%, and weighted
precision, recall, and F1-scores of approximately 72.7%, 72.6%, and
72.4%, respectively. Consequently, we selected LLaMA3-8B as the
primary model for the SoACer framework due to its superior pre-
dictive performance. In addition, interestingly utilizing the embed-
dings from reasoning language models [3], such as DS-LLaMA-8B
(DeepSeek-R1-Distill-Llama-8B), does not improve classi�cation
performance compared to LLaMA3-8B.

Performance Comparison Based on Model Size. We observe that
model performance generally correlates positively with model size.
For instance, larger models such as LLaMA3-8B (8 billion parame-
ters) and DS-LLaMA-8B achieve higher performance compared to
smaller models like LLaMA-3.2-1B (1 billion parameters). Specif-
ically, LLaMA3-8B outperforms LLaMA-3.2-1B by approximately
1.6% in overall accuracy, suggesting that larger models, due to in-
creased parameter capacity, better capture semantic nuances critical
for accurate classi�cation.

Auto-regressive vs. Encoder-based Models. In this paper, we com-
pare light-weight auto-regressive models (e.g., LLaMA3-8B, DS-
LLaMA-8B, LLaMA-3.2-3B) with encoder-based architectures such
as ModernBERT [35]. The results reveal signi�cant di�erences.
ModernBERT, representing a recent advancement in encoder-based
architectures, achieved slightly lower accuracy (70.0%) compared
to auto-regressive LLM like LLaMA3-8B (72.6%). Unlike previous
encoder-based models, such as BERT and RoBERTa, ModernBERT
incorporates several architectural improvements, making it a more
competitive alternative for document-level understanding [35].
These enhancements allow ModernBERT to capture long-range
dependencies more e�ectively while maintaining e�ciency, mak-
ing it a strong representative of encoder-based models in this task.
Despite ModernBERT’s strength in bi-directional context compre-
hension, the larger auto-regressive LLMs lead to more robust per-
formance on website classi�cation tasks that require nuanced con-
textual understanding and long-range dependencies.

Traditional Methods vs. Advanced Models. Evaluating traditional
recurrent neural network models, particularly the Long Short-
Term Memory (LSTM), we note a notable performance gap com-
pared to modern transformer-based architectures. The LSTMmodel
achieved signi�cantly lower accuracy (66.0%) compared to advanced
transformer models, such as LLaMA3-8B (72.6%) and DS-LLaMA-
8B (72.1%). This underscores the transformational shift in natural
language processing capabilities o�ered by transformer-based ar-
chitectures which is primarily due to their superior handling of
long-range contextual dependencies and providing a reach contex-
tual embedding representation.

In summary, our analysis demonstrates that LLaMA3-8B consis-
tently outperform smaller models and encoder-based architectures.
This shows a critical role of model size in capturing the seman-
tic nuances of web content. These results highlight that advanced
transformer-based approaches o�er a signi�cant advantage over
traditional methods such as LSTM by e�ectively handling long-
range dependencies. Ultimately, our �ndings con�rm that lever-
aging state-of-the-art LLM embeddings is key to achieving robust
performance in website classi�cation tasks.

Table 4: Performance comparison of various model architectures
on website classi�cation. Metrics include Overall Accuracy (Acc.),
Balanced Accuracy (B Acc.), Weighted Precision (W Prec.), Weighted
Recall (W Rec.), and Weighted F1-score (W F1).

Model Acc. B Acc. W Prec. W Rec. W F1

DS-LLaMA-8B 72.1% 70.3% 72.1% 72.1% 72.0%
LLaMA-3.2-1B 71.0% 69.0% 71.0% 71.0% 70.9%
LLaMA-3.2-3B 72.1% 70.3% 72.1% 72.1% 71.9%
LLaMA3-8B 72.6% 70.6% 72.7% 72.6% 72.4%
ModernBERT 70.0% 69.6% 70.2% 70.0% 70.0%
LSTM 66.0% 66.0% 65.8% 66.0% 65.7%

5.4 Ablation Study: Comparative Analysis of
Full-text vs. Summary-based Classi�cation
using LLM Embeddings

To evaluate the e�ectiveness of extractive summarization in han-
dling lengthy and noisy website content, we conducted an ablation
study comparing the classi�cation performance of full-text ver-
sus summary-based inputs using the LLaMA-3.2-1B model. Given
the signi�cant computational resources required for processing
full-text inputs, we strategically subsampled websites containing
7,000 tokens or fewer—far above the median website content length
(4,878 tokens)—to reduce the computational footprint while pre-
serving the essence of the dataset. This approach ensured that both
models were trained on the same subsampled dataset, therefore en-
abling a fair and accurate comparison. Table 5 details the resulting
subsampled dataset.

Figure 3 compares the classi�cation performance metrics be-
tween summary-based and full-text inputs. Our �ndings demon-
strate that summary-based classi�cation consistently outperforms
full-text classi�cation across all metrics, with improvements of 3.5%
in overall accuracy, 3.2% in balanced accuracy, 2.50% in weighted
precision, 3.5% in weighted recall, and 3.8% in weighted F1-score.
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Figure 3: Performance comparison of summary-based vs. full-text
classi�cation for Llama-3.2-1B. The bar chart illustrates Accuracy
(Acc.), Balanced Accuracy (B Acc.), Weighted Precision (W Prec.),
Weighted Recall (W Rec.), andWeighted F1-score (W F1). across both
settings.

Table 5: Dataset split and subsampling percentages for the ablation
study.

Set Count Subsampled Reduction (%)
Training 109,476 20,000 81.74%
Validation 27,370 14,021 48.77%
Test 58,649 18,790 67.96%

These results clearly indicate that extractive summarization not
only signi�cantly reduces computational overhead but also en-
hances model performance by distilling noisy and long website con-
tent into more coherent and contextually meaningful summaries.
Additionally, another interesting observation aligns with our initial
hypothesis that the most frequently discussed sections re�ect a web-
site’s core activity, is supported by the performance gap between
summary-based and full-text classi�cation.

5.5 Evaluation of PrivaSeer Labeling System
This section investigates the e�ect of using the PrivaSeer labeling
system in SoAC as classi�cation labels on the website classi�cation
task performance. We do this by comparing the advantages of utiliz-
ing the PrivaSeer labeling system over the original �ne-grained PDL
labelling system. Then, to analyze the limitations of the selected
coarse-grain (PrivaSeer) labeling system, we perform an error anal-
ysis to pinpoint common inter-sector misclassi�cation and provide
insights and recommendations for future improvements.

5.5.1 Advantages of Coarse-Grain Categories over Fine-Grain Cate-
gories . As shown in Figure 4, adopting the coarse-grained PrivaSeer
labeling system as classi�cation labels in the SoAC dataset yields
signi�cant improvements in SoACer performance compared to the
original 148 �ne-grained labels from People Data Labs (PDL). Specif-
ically, we observe a notable increase in the weighted F1-score from
approximately 52.5% with the �ne-grained labeling system to 72.4%
using the coarse-grained labeling system. Similar improvements are

Figure 4: Performance comparison of the sector classi�cation task
using �ne-grained (148 detailed industry categories) labels versus
coarse-grained (10 broad sectors from the PrivaSeer labeling system)
labels.

observed in accuracy, precision, and recall metrics. This improve-
ment is attributed to the coarse-grained labels’ ability to reduce
data sparsity (less sectors with low number of samples in PrivaSeer
) and semantic overlap (less categories with similar activities in
PrivaSeer). For instance, "Information Technology and Services"
and "Computer Software" are distinct �ne-grained categories that
fall under the broader "IT & Electronics" coarse-grained category,
as illustrated in the �rst row of Table 6.

5.5.2 Error Analysis and Sector Overlaps. While the previous sec-
tion demonstrated a signi�cant improvement in sectoral classi�ca-
tion performance by adopting the coarse-grained labeling system
in the SoAC, this section provides a detailed error analysis of the
SoACer classi�cation results. Our focus is on the confusion be-
tween coarse-grained sectors, to identify the underlying causes of
misclassi�cations and discuss their implications for future work.
To achieve this, we analyze the confusion matrix (Figure 5) and
class-based performance metrics (Table 6) to pinpoint speci�c error
patterns.

Figure 5, a normalized confusion matrix with the diagonal re-
moved, visually represents misclassi�cation percentages between
the ten PrivaSeer sectors, where darker cells indicate higher mis-
classi�cation percentages. Several noteworthy sectoral overlaps are
evident:

Education (EDU)! Finance, Marketing & HR (FMHR) (13.94%). This
represents the most frequent confusion. The high misclassi�cation
rate can be attributed to the inherent semantic overlap between the
EDU and FMHR coarse-grained sectors, as de�ned by the underly-
ing �ne-grained categories (Table 6). Speci�cally, the EDU sector
includes �ne-grained subsectors such as ’Professional Training,’
’Fund-Raising,’ and ’Market Research.’ These subsectors naturally
involve activities closely related to �nance and marketing, and hu-
man resources. Therefore, these �ne-grain sectoral overlaps create
textual and conceptual similarities with the FMHR sector, which
contains �ne-grain sectors like ’Marketing/Advertising,’ ’Financial
Services,’ ’Fund-Raising,’ and ’Management Consulting.’
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Information Technology & Electronics (ITE) ! Finance, Marketing &
HR (FMHR) (12.26%). The misclassi�cation of 12.26% of websites la-
beled as ITE into the FMHR sector is associated to possible semantic
overlap between the two coarse-grain sectors (Table 6). The ITE sec-
tor includes �ne-grain categories like ’Information Technology and
Services’ and ’Program Development’. Therefore, websites that are
related to the mentioned �ne-grain sectors in ITE contain similar
vocabulary to several FMHR �ne-grain categories, such as ’Finan-
cial Services’, ’Marketing/Advertising’, and ’Human Resources’;
therefore, SoACer may incorrectly classify them as FMHR. Essen-
tially, the classi�er detects the mention of FMHR-related activities
within ITE websites.

Consumer & Supply Chain (CSC)! Civil, Mechanical & Electrical
(CME) (10.68%). The misclassi�cation between CSC and CME is
attributed to the semantic overlap in their focus on physical goods
and associated systems. While CSC encompasses categories like
’Consumer Goods,’ ’Packaging,’ and ’Transportation’ (addressing
products and their movement), CME includes categories such as
’Machinery,’ ’Building Materials,’ and ’Automotive’ (addressing the
creation and engineering of those products and the systems that
utilize them). Consequently, websites related to CSC may discuss
the materials used in packaging or the vehicles used in transporta-
tion, resulting in shared vocabulary between the sectors and their
misclassi�cation as CME, which centers on design and production
aspects.

In summary, the error analysis reveals a consistent trend: se-
mantic overlap between coarse-grained sectors, as de�ned by their
constituent �ne-grained categories (Table 6), contributes to mis-
classi�cation errors. This suggests that the inherent ambiguity in
assigning websites to a single sector, particularly when they ex-
hibit characteristics of multiple sectors, limits the accuracy of the
classi�cation. The three most frequent misclassi�cation patterns,
discussed above, exemplify this issue. This analysis provides valu-
able insights into the limitations of a single-label classi�cation
approach for websites and highlights the need for future research
to address these challenges.

5.5.3 Sector-Based Performance. Figure 6 and the accompanying
metrics reveal that SoACer’s accuracy di�ers substantially across
the ten sectors. While unequal class sizes also contribute to these
performance gaps, here we focus on di�erences arising from how
narrowly or broadly each coarse-grained sector is de�ned by its
underlying �ne-grained subsectors (see Table 6).

Sectors that achieve higher classi�cation accuracies, such asMed-
ical (MED) at 84.6% and Finance, Marketing & Human Resources
(FMHR) at 82.8%, are characterized by �ne-grained subsectors that
represent relatively focused and less overlapping domains. For ex-
ample, the Medical sector includes subsectors speci�cally related to
’Hospital Care’, ’Medical Practice’, and ’Pharmaceuticals’. The con-
centrated nature of activities within these �ne-grained subsectors
contributes to more distinct textual characteristics, which leads to
more accurate classi�cation. However, FMHR also bene�ts from
being the largest sector in the dataset (Table 1), with 38,331 sam-
ples (19.6%). This considerable sample size provides SoACer with
a more extensive body of text to learn the characteristic patterns
associated with FMHR, likely helping to counterbalance some of the

Figure 5: Presents a row-normalized confusion matrix with the
diagonal (correct predictions) blanked out so that only misclassi�-
cation rates remain. Each row corresponds to the true sector, and
each column to the predicted sector; darker cells indicate a higher
fraction of websites from the true sector being assigned to the pre-
dicted sector. This makes it easy to spot which sector pairs SoACer
most frequently confuses, for example, a dark cell in the row for
Education (EDU) under the column for Finance, Marketing & HR
(FMHR) shows that 13.94% of Education websites are misclassi�ed
as Finance, Marketing & HR.

potential ambiguity introduced by the diversity of its �ne-grained
components and contributing signi�cantly to its high accuracy.

In contrast, sectors with lower accuracies, including Education
(EDU) at 55.8%, Non-Pro�t (NP) at 57.2%, and Consumer & Supply
Chain (CSC) at 63.2%, are de�ned by a more diverse and extensive
set of �ne-grained subsectors. This broader scope introduces greater
potential for ambiguity and overlap with other sectors. For instance,
the Education sector incorporates a wide range of subsectors, from
’EducationManagement’ and ’Higher Education’ to ’Publishing’ and
’Market Research’. Similarly, the Non-Pro�t sector includes di�erent
areas such as ’Non-Pro�t Management’, ’Environmental Services’,
and ’Public Safety’. The Consumer & Supply Chain (CSC) sector
is also broadly de�ned. The CSC encompasses ’Retail’, ’Consumer
Goods’, and ’Logistics’, among others. The inclusion of such varied
�ne-grained activities within these coarse-grained sectors can lead
to less distinct textual patterns and increased semantic overlap,
which presents greater challenges for accurate classi�cation. This
analysis indicates that the degree of focus and diversity within
the �ne-grained subsectors comprising each coarse-grained sector
in�uences the clarity of sector boundaries and contributes to the
observed di�erences in classi�cation performance.

Based on the error analysis and the class-based performance
evaluation, the misclassi�cation errors observed are closely related
to the semantic overlaps between coarse-grained sectors, which
arise from the diverse and sometimes overlapping nature of their
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Figure 6: Accuracy performance metrics across sectors.

constituent �ne-grained categories as de�ned in Table 6. The vari-
ation in sector-based classi�cation performance directly re�ects
this, where sectors composed of more focused, �ne-grained cate-
gories achieve higher accuracy, while those encompassing broader
and more interconnected �ne-grained categories present greater
challenges for accurate classi�cation by SoACer.

For future work, two promising directions emerge from these
�ndings. First, the PrivaSeer labeling system could be re�ned for
speci�c applications. For instance, adapting the coarse-grained sec-
tor de�nitions to align more closely with sector-speci�c privacy
laws in the U.S. could enhance the framework’s utility for regulatory
compliance checks. Second, exploring multi-label or hierarchical
classi�cation approaches could better capture the multifaceted na-
ture of websites that span multiple sectors. Such methods could
not only improve overall classi�cation accuracy by resolving am-
biguities caused by sector overlaps but also enrich downstream
applications, such as targeted advertising, where identifying mul-
tiple sector associations can lead to more e�ective ad placement
strategies.

6 Disscussion
Our experimental investigations reveal several key insights into the
e�cacy of the SoACer framework for sector-based website classi�-
cation. First, our analysis of the LexRank summarization parameters
demonstrates that carefully tuning the summary length speci�cally,
extracting approximately 20 sentences per document, yields a per-
formance boost in classi�cation. This experiment shows that an
optimal level of content distillation can reduce computational over-
head while preserving the important information necessary for the
accurate classi�cation of websites.

Secondly, the comparative study of various classi�er architec-
tures indicates that LLaMA3-8B outperforms both lighter auto-
regressive models and encoder-based counterparts on this task.
The superior performance of larger models suggests that increased
parameter capacity is crucial for capturing the nuanced semantic
features of web content. Moreover, our experiments show that rea-
soning model embeddings (DeepSeek-R1-Distill-Llama-8B), despite
sharing the same parameter size as LLaMA3-8B, do not improve

classi�cation accuracy. This suggests that reasoning-focused �ne-
tuning may not necessarily enhance the contextual representations
needed for sector-based website classi�cation tasks.

In the ablation study comparing full-text with summary-based
classi�cation, we observed that summaries not only enable faster
inference times but also improve overall accuracy and other evalu-
ation metrics. This �nding supports our hypothesis that extractive
summarization can e�ectively distill the core thematic elements of
a website, which are often overshadowed by extraneous or redun-
dant content scraped from the websites. It also opens a discussion
on the bene�ts of re�ning summarization techniques and explor-
ing controllable text summarization to extract more task-relevant
information for website classi�cation.

Finally, the in-depth analysis of the PrivaSeer labeling system
highlights the advantages of adopting a coarse-grained sectoral
categorization over �ne-grained industry classi�cations. While the
coarse-grain labeling approach substantially improves performance
metrics by alleviating issues of data sparsity for underrepresented
sectors and semantic overlap compared to the 148 �ne-grain la-
beling approach, the error analysis reveals persistent challenges
for the PrivaSeer labeling system. Notably, signi�cant inter-sector
misclassi�cation (Figure 5), such as overlaps observed between
Education and FMHR, ITE and FMHR, or CSC and CME, stems
particularly from the inherent complexity and diversity of the �ne-
grained subsectors that compose certain coarse-grained categories
(Table 6). These �ndings motivate the exploration of multi-label or
hierarchical approaches that could better accommodate the multi-
faceted nature of modern websites and address the limitations of
rigid single-label assignments.

7 Conclusion and Future Work
We introduced the SoAC corpus, a large-scale dataset of websites
categorized into 10 distinct sectors, and SoACer, a novel LLM-based
framework for sector-based website classi�cation. Our experiments
demonstrated the e�ectiveness of using 20-sentence extractive sum-
marization and showed that classi�ers leveraging LLaMA3-8B em-
beddings outperform tested alternatives. While the coarse-grained
PrivaSeer labeling system o�ers advantages over �ne-grained clas-
si�cation, our analysis revealed that misclassi�cation errors and
varying sector performance are linked to the overlaps and diversity
of constituent �ne-grained subsectors.

Moving forward, we identify two key directions for future re-
search. First, the PrivaSeer labeling system could be re�ned for spe-
ci�c applications, such as aligning with U.S. sector-based privacy
laws to enhance regulatory compliance checks. Second, exploring
multi-label or hierarchical classi�cation paradigms is essential to
handle sector overlaps and more accurately represent multi-sector
websites, which can be bene�cial for applications like targeted
advertising by identifying relevant sectoral associations.

8 Limitations and Ethical Considerations
Our analysis is based on self-declared industry categories, which
may introduce selection bias because websites typically report only
their primary sector. This practice can lead to the underrepresen-
tation of secondary sectors and an overemphasis on dominant
industries. Additionally, although our PrivaSeer labeling system
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aggregates 148 �ne-grained categories into 10 broad sectors, this
coarse-grained approach may overlook subtle distinctions that are
crucial for a nuanced understanding of certain industries. These lim-
itations could a�ect the fairness and generalizability of our �ndings
and may have unintended implications for regulatory or practical
applications.
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